

Invenio-OAuth2Server

[image: _images/invenio-oauth2server.svg]
 [https://travis-ci.org/inveniosoftware/invenio-oauth2server][image: _images/invenio-oauth2server1.svg]
 [https://coveralls.io/r/inveniosoftware/invenio-oauth2server][image: _images/invenio-oauth2server2.svg]
 [https://pypi.org/pypi/invenio-oauth2server]Invenio module that implements OAuth 2 server.

	Free software: MIT license

	Documentation: https://invenio-oauth2server.readthedocs.io/

Features

	
	Implements the OAuth 2.0 authentication protocol.

	
	Provides REST API to provide access tokens.

	Provides decorators that can be used to restrict access to resources.

	Handles authentication using JSON Web Tokens.

	Adds support for CSRF protection in REST API.

User’s Guide

This part of the documentation will show you how to get started in using
Invenio-OAuth2Server.

	Overview

	Installation

	Configuration

	Usage

	Example applications

API Reference

If you are looking for information on a specific function, class or method,
this part of the documentation is for you.

	API Docs
	Decorators

	Models

	Provider

	Validators

	Proxies

	Errors

Additional Notes

Notes on how to contribute, legal information and changes are here for the
interested.

	Contributing

	Changes

	License

	Contributors

Overview

Understanding API Authentication in Invenio

A user can make authenticated requests against the Invenio REST APIs using two
different methods:

Session

A user who logged into an Invenio application in the browser obtains a session.
The session is implemented via Secure HTTP-only cookies, to ensure that the
cookie containing the session identifier is only submitted over HTTPS, and that
JavaScript applications running in the browser cannot access the cookie. When
the session cookie is provided in an HTTP request to the API, the cookie is
used to authenticate the user.

Because the session-based authentication is primarily used from a browser, it is
important to protect the API against Cross-Site Request Forgery (CSRF) attacks.
Invenio protects against CSRF-attacks by embedding a short lived CSRF-token
into the HTML DOM tree from the server-side. This CSRF-token is then read by a
JavaScript application and added to the HTTP request header. Thus, the HTTP
request header will include both the session cookie as well as the CRSF-token.
The CSRF-token is implemented via a JSON Web Token (JWT).

The session identifier stored inside the session cookie is furthermore protected
in a way, so that it must be used from the same machine and same browser.

Access token

An access token (or API key) can also be used to make authenticated requests
to the API. Access tokens are primarily used by machines accessing the
Invenio REST API, contrary to session-based authentication which is primarily
used in browsers by humans. The access tokens can also be used to delegate user
rights to a third-party application without exposing user credentials. This
delegation of rights can further be scoped to specific parts of the API, to not
give full access to third-party applications.

Access tokens can be obtained in different ways. A user may for instance
manually create an access token via the user interface, or e.g. a third-party
application can initiate an OAuth 2.0 authentication flow that eventually
provides them with an access token. The different scenarios for how to obtain an
access token are explained in detail further below.

Obtaining a session and JWT token

To obtain a session:

	The user logs in by providing his login credentials

	A new session is created

After this point we can add a CSRF token to not be prone to CSRF attacks.

	For the CSRF token we can use the JWT as it contains user information and
it fulfills the key properties of a CSRF token

By default, the JWT is embedded in the DOM tree using the Jinja context
processor {{jwt()}} or {{jwt_token()}} from a template.
By passing the JWT with each request, the user state is never saved in
server memory making this a stateless authentication mechanism. Then the
server just looks for and validates the JWT in the Authorization
header, to allow access to the protected resources.

Obtaining an access token

In the case where the client requesting an access token is the resource owner,
the token will allow all permissions the user would have by providing his
username and password credentials. For example to use a personal access token
to send REST API requests, the procedure is the following:

	First the user logs in and navigates to his profile page

	Clicks on Create New Personal Token

	Stores the generated string in a variable $ACCESS_TOKEN

	Now requests can be made to protected resources by passing
it as a parameter, e.g.

curl -XPOST -d '{some_record_data}' $HOST:5000/records/
\?access_token=$ACCESS_TOKEN

In the case where the client is a third party, a web application for example
requesting access to an owner’s protected resources, the procedure is
different. Let’s see the case where a user goes to example.com and
chooses to log in via Invenio. The setup to enable this is as follows:

	First, the application has to be registered as an authorized application

	This can be done by the settings page, as it was for the personal access
tokens, but now clicking on New Application

	After filling out the form and setting a Redirect URL, a Client ID
and Client Secret are generated

	These have to be set in the example.com application, in order to be
able to make requests

Now a user can navigate to example.com and can select to log in via
Invenio. The procedure will be along the following lines:

	A request is sent to the /authorize endpoints in Invenio from
example.com with the Client ID and Client Secret passed
as parameters

	The user is redirected to an Invenio page where he is asked to log in

	After logging in, a form shows what type of permissions the example.com
is requesting, and the user can decide to authorize it

	Invenio redirects back to the Redirect URL set for this application,
and returns an authorization code with a limited lifespan

	The authorization can be used to obtain an access token by querying the
/token endpoint in Invenio

	example.com can now send requests to Invenio using this access token to
access resources available to the user

Oauth2 flows

There are different Oauth2 flows you should use depending mostly on the type of
your Client but also in other parameters such as the level of trust of the
Client. By different flows we mean that Oauth2 provides different grant
types that you can use. Grant types are different ways of retrieving an
access token that eventually will lead you to access a protected resource.
Before analyzing the different Oauth2 flows let’s see some Oauth2 terminology:

	Resource owner: the entity that has the
ownership of a protected resource. Can be
an the application itself or an end user.

	Client: an application that requests
access to a protected resource on behalf of the resource
owner.

	Resource server: the server in which
the protected resource is stored. This is the API you want
to have access.

	Authorization server: this is the
server that authenticates the resource owner and issues an
access token to the Client after getting proper
authorization. In our case this is the OAuth2Server
package.

	User Agent: the agent used by the
Resource Owner to interact with the Client, for example a
browser or a native application.

The crucial thing to decide which Oauth2 grant type is most
suitable for you to use, as we said, is the type of your
client. Having in mind that we define the below 4 cases.

Client is the resource owner

This is the case that the application that requests access to a
protected resource is also the owner of this resource. In that
case the application holds the Client ID and the Client
Secret and uses them to authenticate itself through the
authentication server and retrieve the access token. Such an
example could be a service running on the client server and
trying to get access to a resource on the same server. A typical
flow diagram is the following:

[image: _images/client-credentials.jpg]

	Application authenticates itself using Client ID and Secret.

	Retrieves an access token.

	Uses the token to access the protected resource.

If this case is the one that suits your needs then you should
use the Client Credentials grant.

Client is an application running on a web server

In that case you should use the Authorization Code grant. In
this flow the Client requests an access token from the
authorization server in order to access the protected
resource. The Client gets an access token, and optionally a refresh token,
after first the resource owner is authorized.

[image: _images/authorization-code.jpg]

	Application redirects the user agent to the /authorize url to authenticate itself
through the authorization server.

	The end user the first time is provided with a consent page that asks for specific
permissions to be granted to the application (e.g. user email, list of contacts etc.)

	After the user confirms the access grant the authorization server returns an
authorization code to the application.

	With the possession of the authorization code, the application asks from the
authorization server an access token in exchange for its code.

	The authorization server validates the code sent from the application and if is valid
issues an access token back to it. Optionally can return also a refresh token that is used by the application when the access token is expired.

	The application uses the retrieved access token to eventually consume the protected
resources stored in the resource server.

Client is a Single Page Application

If your application is a single page application then you should use the
Implicit grant. In this grant type instead of getting
first an authorization code in order to ask for an access token
you directly ask for the token. In the plus side this method is
faster as there is no need for round trip to get an access
token. However, there is a security risk as the access token is exposed to
the user agent (e.g. the user’s browser). Also you should consider that the
Implicit grant doesn’t return refresh tokens.

[image: _images/implicit-grant.jpg]

	Application redirects the user agent to the /authorize url to authenticate itself through the authorization server.

	The end user the first time is provided with a consent page that asks for specific
permissions to be granted to the application (e.g. user email, list of contacts etc.)

	After the user confirms the access grant the authorization server returns an
access token to the application. Note that in this flow no refresh token is issued and the access_token is short lived.

	The application uses the retrieved access token to eventually consume the protected
resources stored in the resource server.

Client is trusted with user Credentials

In that case probably you should use the Resource Owner
Password Credentials Grant. In this flow the end user trusts
the Client with his/her credentials in order to be used by the
client to authenticate him/her through the authorization server.
This grant type is disabled by default in
Invenio-OAuth2Server, and should only be used if there is no
possibily to use another redirect-based flow.

Installation

Invenio-OAuth2Server is on PyPI so all you need is:

$ pip install invenio-oauth2server

Configuration

Usage

Example applications

Example application

Run example development server:

$ pip install -e .[all]
$ cd examples
$./app-setup.sh
$./app-fixtures.sh
$ FLASK_APP=app.py flask run -p 5000

Open settings page to generate a token:

$ open http://127.0.0.1:5000/account/settings/applications

Login with:

username: admin@inveniosoftware.org

password: 123456

Click on “New token” and compile the form:
insert the name “foobar”, check scope “test:scope” and click “create”.
The server will show you the generated Access Token.

Make a request to test the token:

export TOKEN=<generated Access Token>
curl -i -X GET -H "Content-Type:application/json" http://127.0.0.1:5000/ \
 -H "Authorization:Bearer $TOKEN"

To end and remove any traces of example application, stop the example
application and run:
.. code-block:: console

$./app-teardown.sh

Example OAuth2 Consumer

This example OAuth2 consumer application is used to fetch an OAuth2 access
token from example application.

For more information about OAuth2 protocol see

https://invenio-oauthclient.readthedocs.io/en/latest/overview.html

Note

Before continuing make sure example application is running.

Open settings page of example app to register a new OAuth2 application:

$ open http://127.0.0.1:5000/account/settings/applications

Login using:

username: admin@inveniosoftware.org

password: 123456

	Click on “New application” and compile registration form with following data:

	
Name: foobar-app

Description: An example OAuth2 consumer application

Website URL: http://127.0.0.1:5100/

Redirect URIs: http://127.0.0.1:5100/authorized

Client Type: Confidential

Click register and example application will generate and show you
a Client ID and Client Secret.

Open another terminal and move to examples-folder.

Export these values using following environment variables before starting
the example consumer or change values of corresponding keys
in examples/consumer.py to match.

$ export CONSUMER_CLIENT_ID=<generated_client_id>
$ export CONSUMER_CLIENT_SECRET=<generated_client_secret>

LOGOUT admin@inveniosoftware.org from example application:

$ open http://127.0.0.1:5000/logout

Run the example consumer

$ FLASK_APP=consumer.py flask run -p 5100

Start OAuth authorization flow and you will be redirected to example
application for authentication and to authorize example consumer to
access your account details on example application.

Login to example application with:

username: reader@inveniosoftware.org

password: 123456

Review the authorization request presented to you and authorize
the example consumer.

You will be redirected back to example consumer where you can see details
of the authorization token that example application generated to
example consumer.

Note

In case the authorization flow ends in an error, you can usually see
the error in query-part of the URL.

Using example consumer’s UI you can request a new access token from example
application either by using a refresh token or by completing
the authorization flow again.

To manage settings of OAuth2 consumer at invenio-oauth2server
settings page, login with the account that registered the consumer,
admin@inveniosoftware.org.

To review and possibly revoke permissions of OAuth2 consumer that has
been authorized to access resources login with the account that authorized
the consumer, reader@inveniosoftware.org.

This example consumer is inspired by example presented in
requests-oauthlib documentation
(http://requests-oauthlib.rtfd.io/en/latest/examples/real_world_example_with_refresh.html)
and is based on example application(s) of flask-oauthlib:
(https://github.com/lepture/flask-oauthlib/tree/master/example)
(https://github.com/lepture/flask-oauthlib/tree/master/example/contrib/experiment-client/douban.py)

Note that to support automatic refreshing of access tokens this consumer uses
flask-oauthlib.contrib.client which is considered experimental.

API Docs

Decorators

Models

Provider

Validators

Proxies

Errors

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

Types of Contributions

Report Bugs

Report bugs at https://github.com/inveniosoftware/invenio-oauth2server/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

Invenio-OAuth2Server could always use more documentation, whether as part of the
official Invenio-OAuth2Server docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at
https://github.com/inveniosoftware/invenio-oauth2server/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up invenio-oauth2server for local development.

	Fork the inveniosoftware/invenio-oauth2server repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/invenio-oauth2server.git

	Install your local copy into a virtualenv. Assuming you have
virtualenvwrapper installed, this is how you set up your fork for local
development:

$ mkvirtualenv invenio-oauth2server
$ cd invenio-oauth2server/
$ pip install -e .[all]

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass tests:

$./run-tests.sh

The tests will provide you with test coverage and also check PEP8
(code style), PEP257 (documentation), flake8 as well as build the Sphinx
documentation and run doctests.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -s -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests and must not decrease test coverage.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring.

	The pull request should work for Python 2.7, 3.3, 3.4 and 3.5. Check
https://travis-ci.com/inveniosoftware/invenio-oauth2server/pull_requests
and make sure that the tests pass for all supported Python versions.

Changes

Version 1.0.0 (released 2018-03-23)

	Initial public release.

License

MIT License

Copyright (C) 2015-2018 CERN.

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

In applying this license, CERN does not waive the privileges and immunities
granted to it by virtue of its status as an Intergovernmental Organization or
submit itself to any jurisdiction.

Contributors

	Alexander Ioannidis

	Alizee Pace

	David Caro

	Diego Rodriguez

	Dinos Kousidis

	Harri Hirvonsalo

	Harris Tzovanakis

	Jacopo Notarstefano

	Jiri Kuncar

	Krzysztof Nowak

	Lars Holm Nielsen

	Leonardo Rossi

	Miltiadis Alexis

	Nicolas Harraudeau

	Paulina Lach

	Sami Hiltunen

	Sebastian Witowski

	Tibor Simko

Index

 _static/up-pressed.png

_static/up.png

_images/authorization-code.jpg
Applcation(Client) }‘:‘34’{ User agent ‘
B A Y
Auth Server (invenio 2
oauthzserver) |3

Your API
(Resource Server)

_images/client-credentials.jpg
1
Appiication(Client) Auth Server

Your API
(Resource Server)

_images/implicit-grant.jpg
Applcation(Client) }‘:‘34’{ User agent
H)
Auth Server (invenio 2
oauthzserver) |3

Your API
(Resource Server)

_static/ajax-loader.gif

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		
 Invenio-OAuth2Server

 		
 Overview

 		
 Understanding API Authentication in Invenio

 		
 Obtaining a session and JWT token

 		
 Obtaining an access token

 		
 Oauth2 flows

 		
 Client is the resource owner

 		
 Client is an application running on a web server

 		
 Client is a Single Page Application

 		
 Client is trusted with user Credentials

 		
 Installation

 		
 Configuration

 		
 Usage

 		
 Example applications

 		
 Example application

 		
 Example OAuth2 Consumer

 		
 API Docs

 		
 Decorators

 		
 Models

 		
 Provider

 		
 Validators

 		
 Proxies

 		
 Errors

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Changes

 		
 License

 		
 Contributors

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

